National Repository of Grey Literature 2 records found  Search took 0.00 seconds. 
Possibilities of recycling in the sand aerated concrete technology
Kostura, Patrik ; Kulísek, Karel (referee) ; Drochytka, Rostislav (advisor)
Waste of the aerated concrete is generated directly from the production of aerated concrete or from the constructions. The options for handling aerated concrete are two. We can deal with it as a light aggregate or as a material for the production of aerated concrete. Based on the physico-mechanical properties, the decision was made that aerated concrete is suitable as a light aggregate. The brash as a light aggregate was tested in two variants of the softness (0-2 mm, 0.25-2 mm). Evaluation of the brash as a suitable material for the production of aerated concrete consisted of the creation of laboratory-autoclaved composites. The brash was tested in different ratios (10%, 20%, 30%, 40%), two variants of fineness (0-2 mm, 0-0.25 mm) and two formulations (lime base, fluffy fly ash). Silicon sand was replaced. Based on physico-mechanical properties and microstructural analysis (XRD, SEM), was found that aerated concrete as a material is suitable for 40% sand substitution.
Possibilities of recycling in the sand aerated concrete technology
Kostura, Patrik ; Kulísek, Karel (referee) ; Drochytka, Rostislav (advisor)
Waste of the aerated concrete is generated directly from the production of aerated concrete or from the constructions. The options for handling aerated concrete are two. We can deal with it as a light aggregate or as a material for the production of aerated concrete. Based on the physico-mechanical properties, the decision was made that aerated concrete is suitable as a light aggregate. The brash as a light aggregate was tested in two variants of the softness (0-2 mm, 0.25-2 mm). Evaluation of the brash as a suitable material for the production of aerated concrete consisted of the creation of laboratory-autoclaved composites. The brash was tested in different ratios (10%, 20%, 30%, 40%), two variants of fineness (0-2 mm, 0-0.25 mm) and two formulations (lime base, fluffy fly ash). Silicon sand was replaced. Based on physico-mechanical properties and microstructural analysis (XRD, SEM), was found that aerated concrete as a material is suitable for 40% sand substitution.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.